Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services
نویسندگان
چکیده
Simulation is a powerful tool for modeling complex systems with intricate relationships between various entities and resources. Simulation optimization refers to methods that search the design space (i.e., the set of all feasible system configurations) to find a system configuration (also called a design point) that gives the best performance. Since simulation is often time consuming, sampling as few design points from the design space as possible is desired. However, in the case of multiple objectives, traditional simulation optimization methods are ineffective to uncover the efficient frontier. We propose a framework for multi-objective simulation optimization that combines the power of genetic algorithm (GA), which can effectively search very large design spaces, with data envelopment analysis (DEA) used to evaluate the simulation results and guide the search process. In our framework, we use a design point’s relative efficiency score from DEA as its fitness value in the selection operation of GA. We apply our algorithm to determine optimal resource levels in surgical services. Our numerical experiments show that our algorithm effectively furthers the frontier and identifies efficient design
منابع مشابه
A full ranking method using integrated DEA models and its application to modify GA for finding Pareto optimal solution of MOP problem
This paper uses integrated Data Envelopment Analysis (DEA) models to rank all extreme and non-extreme efficient Decision Making Units (DMUs) and then applies integrated DEA ranking method as a criterion to modify Genetic Algorithm (GA) for finding Pareto optimal solutions of a Multi Objective Programming (MOP) problem. The researchers have used ranking method as a shortcut way to modify GA to d...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملSolving Redundancy Allocation Problem with Repairable Components Using Genetic Algorithm and Simulation Method
Reliability optimization problem has a wide application in engineering area. One of the most important problems in reliability is redundancy allocation problem (RAP). In this research, we worked on a RAP with repairable components and k-out-of-n sub-systems structure. The objective function was to maximize system reliability under cost and weight constraints. The aim was determining optimal com...
متن کاملA neuro-data envelopment analysis approach for optimization of uncorrelated multiple response problems with smaller the better type controllable factors
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015